来源:简单网校
发布时间:2016-01-29
1.综合题在高考试卷中的位置与作用:
综合性数学试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。
2.解综合性问题的三字诀:
“三性”:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好“三性”,即:
(1)目的性:明确解题结果的终极目标和每一步骤分项目标。
(2)准确性:提高概念把握的准确性和运算的准确性。
(3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。
“三化”:
(1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。
(2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。
(3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。
“三转”:
(1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。
(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。
(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。
“三思”:
(1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。
(2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。
(3)思辩:即在解综合题时注意思路的选择和运算方法的选择。
“三联”:(1)联系相关知识,(2)连接相似问题,(2)联想类似方法。
3.对平时综合练习的反思:
平时做完综合练习后,要注重反思这一环节,注意方法的优化。要把解题的过程抽象形成思维模块,注意方法的迁移和问题的拓展。
相关帮助》
课程 文章 问答 资讯 评论 百科